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Errata for

CLUSTER ANALYSIS BY LINEAR CONTRASTS

(RB-72735)

Michael Shafto

1. Page 9, equation (26)

now reads:

"F(b) = b'Rb - tr(R)/n) (b'1)"

should read:

"F(b) = b'Rb - t (R)/n) (b'1)2"

2. Page 9, paragraph immediately following equation (26'),

second sentence.,

now reads:

"This solution is invariant under transformations

oftheformrii+ar
ij

+ c , while the Method A

solution is invariant only under transformations

of the form r
ij

+ ar
ij

ft

should read:

"Solutions by either Method A or Method B are

invariant under transformations of the form

rij arij + c ."

Ia.

November 17, 1972
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CLUSTER ANALYSIS BY LINEAR CONTRASTS
1

Michael Shafto

Princeton University and Educational Testing Service

Introduction

L. L. McQuitty (1967) has suggested a technique of hierarchical cluster

analysis called Iterative Intercolumnar Correlational Analysis (IICA). McQuitty

and Clark have provided a discussion of the mathematics of this technique, its

application to real and artificial data, and its advantages and disadvantages

in comparison with other methods (Clark & McQuitty, 1970; McQuitty, 1971;

McQuitty, Abeles, & Clark, 1970; McQuitty & Clark, 1968). Coles and Stone

(1972) have suggested a related technique.

IICA begins with a raw data matrix from which ,a first-order similarities

matrix R(1) is computed (or, in some cases, R(1) may be obtained directly

by subjects' similarity judgments). The larger the ij -th entry in I.
(1)

the more "alike" or "simnel.," in some sense, stimuli i and a are judged

to be. A second-order similarities matrix R(2) is then computed by intercor-

relating the columns of R(1) . That is, the ij -th entry in R(2) is the

product-moment correlation between columns i and s2
of R

(I)
. Then R(3)

is computed by intercorrelating the columns of R
(2)

, and so on, until a

matrix R(K) is produced in which all elements have absolute value unity,

within reasonable tolerance limits. The stimuli are then partitioned into

two subsets: Those with +1 in the first column of R
(K)

go in one subset;

those with -1 go in the other. (Any column could be used, not just the first.)

A discussion of the convergence problem may be found in Clark and McQuitty (1970).
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Gulliksen, Principal Investigator, and by Educational Testing Service.
The author is grateful to Dr. Walter Kristof for many valuable suggestions

and comments on an earlier version of this report. The assistance of Mrs. Ann

King in supervising the preparation of the manuscript, and of Mr. Terry Birch in

drawing the figures, is also gratefully acknowledged. elf



The purpose of this paper is to suggest a technique of cluster analysis

which is similar in aim to IICA, though different in detail. Two methods will

be proposed for extracting a single bipolar factor (a "contrast component")

directly from the initial similarities matrix. The advantages of this general

approach are that (a) it helps avoid certain misclassification problems

inherent in IICA; (b) it is related in a straightforward way to conventional

techniques of multidimensional scaling (Torgerson, 1958) and therefore allows

a unified treatment of dimensional and "typal" structures, and (c) it provides

an interesting solution to the problem of relations among linear contrasts

based on different subsets of the stimuli. This last problem was initially

raised by McQuitty (1967).

I. Matrix Algebra of One IICA Iteration

The following discussion of the matrix algebra of one IICA cycle is

intended to clarify the relationship between IICA and the new techniques out-

lined below.

Consider a typical iteration, starting with R(k) and ending with R(k+1)

The superscript will be dropped from R(k) for purposes of the following dis-

cussion.

R is an n x n symmetric matrix which is positive semidefinite for

k > 2 . Therefore, there exist matrices U and D , such that D is diagonal,

U' =
-1

, and R = UDU'

Let 1 be a column vector of n 1 's, and let I be the n x n identity

matrix. Define

(1) M = I - 11'/n ;

(2) R =MR ;



( 3 )

(4)

(3)

Thus,

-3-

A = R'R = UDU'M'MUDU' = UDU'MUDU' , since M is idempotent;

T = U'MU ; and

b = U'l .

(6) T = I - bb'in

and the general element of T is

(7 ) t. = 5. - b b
ij ij i j

where S. is the Kronecker delta.
ij

By the Cauchy-Schwarz inequality,

8)

(9)

lb.' < ,-
Therefore,

lb.b.1 <n
1

= 1,...,n

ipi = 1,,n

Now suppose that the inequality in (8) holds for each i , as it almost

always will with real data. Then all the diagonal elements of T are positive.

Define

(10) C = [d Fiag(T)IT[diag(T)]1 ; and

1

(11) W = UD[diag(T)]2 .

Thus,

i2) A = WCW'

and the k + 1 -order similarities matrix is given by



(k+1) r

(13) Ldiag(A)]-2A[diag(A)] -2

Now C is positive semidefinite, since (4) and (10) imply

1 1

(14) C = [diag(T)] ---IPPIU[cliag(T)]

where M is idempotent, therefore positive semidefinite, and, by the "law of

inertia," the transformations from M to C preserve definiteness. Further-

more, it is clear from (10) that each diagonal element of C is unity. Thus,

the necessary and sufficient conditions for C to be a matrix of cosines between

pairs of vectors in. Euclidean n -space are satisfied.

Therefore, (12) is the familiar expression for the inner-products matrix

of a set of vectors, where the columns of W represent the coordinates of the

vectors with respect to n oblique axes 04.022, n
) , and cif. is the

-

cosine of the angle between w1
and w.

- -g

In effect, then, the IICA method performs a transformation of the vectors

(or points) that represent the judged stimuli. The nature of this transforma-

tion is as follows: The vectors at "time k " had coordinates UD with respect

to n orthogonal axes. The vectors at "time k + 1 " have coordinates

1

[diag(A)] 2W with respect to n oblique axes. The cosines between pairs of

oblique axes are the elements of C

(15)

The effect of this transformation can be seen more clearly by noting

w. u
1

2
- bin , and-

(16) c. = -b.b./J(n - bi2 )(n - b.)
2



In equation (15), since b.
1

= uil , the expression under the radical

attains its maximum precisely when the sum of the elements of ui is 0 .

Now d11 ='u!Ru.
s

, which is the squared length of the vector u. . (If R
-1 -

were the dispersion matrix of a set of n random variables, then this quantity

would be the variance of the particular linear combination of those variables

represented by ui .) Thus, in order for the elements of wi to be "large,"

the length of ui must be "large," and the sum of the elements of ui , i.e.,

the sum of the projections of the vectors representing the judged stimuli on

u. must be "small."
2

Consider equation (16): is indeterminate 0/0 if ncij

or b
2

= n ,
1 but this will seldom occur with real data. As b. or b.

approaches 0 , so does c1 . . If lb.1 1
and lb,1 are large, and if they

havethesamesign,thencij becomes large and negative; if they have

oppositesigns,thenc.1j becomes large and positive.

Intuitively, equations (15) and (16) represent two "processes" which are

being "applied" simultaneously to the vectors which represent the judged stimuli

in IICA. Equation (15) states that bipolar axes are "lengthened" while nonbi-

polar axes are "shrunk." Equation (16) states that bipolar axes tend to remain

orthogonal to one another, while nonbipolar axes are rotated toward or away

from one another so that they tend to "collapse" into bipolar axes.

This is how IICA converges toward a single bipolar axis, as illustrated

in Clark and McQuitty (1970). In the early iterations the stimulus-vectors are

transformed toward bipolarity. The greater the initial departure from bipolar-

ity, the greater the "correction factors." As bipolarity is attained in the

1
Note that, if b. = n , then b

k
= 0 , for all k / j .



later iterations, the IICA process becomes similar to the well-known power-

method (Anderson, 1958) for extracting the largest latent root and correspond

ing latent vector of a real symmetric matrix. The "process" represented by

(.16) becomes negligible, in the later iterations.

II. Alternative Methods

The fact that IICA transforms the stimulus-vectors themselves, rather than

providing a solution in terms of the original configuration, seems, a priori,

to be a drawback. Are the clusters revealed by the method prominent in the

data, or are they "weak"--perhaps even artifacts of the method itself? Besides

such theoretical questions, there are practical problems with IICA, as shown in

Section IV below, which can be avoided by the alternative techniques suggested

here. Moreover, therie alternative techniques allow the unified treatment of

dimensional and "ty?al" structures, as originally suggested by McQuitty (1967).

Two methods will be proposed. Neither of these methods requires additional

assumptions about the initial data matrix. Both involve extracting a single

bipolar factor in such a way as to display the major clusters, and both can be

applied recursively to yield hierarchical solutions. Neither makes any trans-

formation of the original stimulus configuration.

Method A

Ignoring equation (16), and concentrating on equation (15), we seek a

vector b , such that b'Rb is "large" and Ib'll is "small." (Note that

this b is not the b of Section I.) Proceeding rather directly, we seek to

maximize b'Rb under the constraints b'b = 1 and b'l = 0 . Introducing

Lagrange multipliers yl , y2 , we write

7
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(17) F(b,y1,y2) = b'Rb - yl(b'b - 1) -

Differentiating F with respect to b , yi and y2 , and setting the

derivative equal to 0 , yields

(18) 2Rb - 2y1b - y21 = 0 ;

(19) b'b - 1 = 0

(20)

(21)

(22)

; and

Premultiplying (18) by 1' gives

y = 21'Rbin
2

Premultiplying (18) by b' gives

y = b'Rb
1

Substituting for y2 in (18) gives

(23) (I - ll'in)Rb = ylb

or, following our previous definition of M ,

(24) MRb = yib

But b'l = 0 by (20), and it is easy to show that b'l = 0 iff Mb = b .

Therefore,2 (24) is equivalent to

(25) MRMb = yib

From (19), (22), and (25), it follows that the desired solution, b* , is

the normalized latent vector of MRM corresponding to the largest latent root.

But what is MRM ? It is simply the scalar-products matrix of the stimulus-

?This step, which shortens the derivation of the solution by about one page,

was suggested by Dr. Walter Kristof.

s
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vectors with respect to a coordinate system with origin at their centroid (see

Torgerson, 1958, p. 258, equation 14).

The vector b* represents the most salient linear contrast between sub--

sets of the stimuli. The stimuli can be ordered with respect to the correspond-

ing elements of b* . Two criteria whic: could then be used to partition the

stimuli into subsets (clusters) are

1. Weak Criterion: Examine the n - 1 differences between adjacent

elements of b* (having arranged these elements in order of magnitude)) find

the largest such difference, and make the split between the corresponding

stimuli. This should suffice when the clusters are fairly distinct.

2. Strong Criterion: Consider each of the n - 1 possible splits

*between pairs of stimuli which are adjacent with respect to b* . For each

possible split, the original similarities matrix R can be partitioned into

similarities within clusters and similarities between clusters. Thus, for

each split, a quantity can be computed which reflects the adequacy of the

partition. It is naturally desirable to have large similarities within

clusters and small similarities between clusters. Therefore, one formula

which could be used would be formally identical to the formula for the alpha

level by a median test. Choose the split which minimizes the "alpha" for the

appropriate "one-tailed test." Of course, it is not suggested that the minimum

"alpha" reflects the statistical significance of the clustering. It simply pro-

vides an intuitively appealing objective function which is sensitive to cluster

size as well as to differences in magnitude of similarities.

Certainly other methods of partitioning co'ild be suggested. Examination

of b* itself, however, will often indicate the presence or absence of clear

clusters, and should provide a check on the adequacy of any method of partitioning.

9
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Basically, what is being 3uggested is to use a one-dimensional scaling solu!:ion

as a heuristic to reduce the num0cm of possible partitions to be considered.

Method B

The following method constrains to be "small"--but not necessarily

0 . Since we want to make b'Rb "large" and "small" at the same time, a

natural function to maximize is simply b'Rb - (b'1)2 , again under the con-

straint b'b = 1 . But since the largest possible value of b'Rb is the

largest latent root of R , which can be no larger than tr(R) , and the

largest possible value of b'1)2 is n , a more "balanced" objective function

is

(26) F(b) = b'Rb - [tr(R) /n] (]12:1)

= b'(R - [tr(R)/11)111)b

or, letting l& = R - [tr(R)/n]ll'

(26') b'R*b b'b = 1 .

The desired solution is simply the normalized latent vector corresponding

to the largest latent root of. R* . This solution is invariant under transforma-

tionsofthefcal ij
, while the Method A solution is invariant only

under transformations of the form r
ij

ari .

j

The extraction of two or more vectors of R* or MRM may be useful when

cross-classification, rather than general hierarchical clustering, is desired.

Cross-classification is a special case of general hierarchical clustering,

since each of two .subsets is partitioned with respect to the same dimension

or feature, whereas in general two different subsets would be partitioned with

respect to different dimensions. The variables can easily be plotted with

respect to an orthogone coordinate system that displays the major clusters.

10
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III. Relations Amo Linear Contrasts Based on Different Subsets of the Stimuli

Suppose that a set of n stimuli has been:partitioned into two subsets,

S
1

and S
2

, according to a "contrast component" b derived by Method A or

Method B. Now S
1

, which contains, say, n
1

stimuli, can be further sub-

divided according to a contrast component bl .

An important question, first raised by McQuitty (1967, cf., his Figure 1),

is, "How are b and bl related?" In particular, are b and bl orthogonal

or not? At first this question seems meaningless, since b has n elements,

while b
1

has n
1
< n elements. How can a scalar product be computed between

two vectors that have different numbers of elements?

The following solution to this problem takes advantage of the fact that

the stimuli have been partitioned with respect to identifiable underlying linear

contrasts.

Let R =

1 R22
R
2

be the partitioned similarities matrix. The vector

b has been computed using R , while the vector ill is based only on R11

A vector d , of n elements, can be constructed such that the first n1

elements of d are proportional to the elements of b and d'Rd is maxi-

mized under the further constraint aid = 1 .

Let d' = [d'1d'2 ]
'
where d

1
= kb

1
for some unknown scalar k . The

problem is to find d
2

and k such that

( F(k,d ) =
2 R21 R22 (Ad[I

[ki2i d2] Ril R12 MD:37i

is maximized under the constraint k
2
+ d'd

2
= 1 . Once again applying the

-a-

method of Lagrange multipliers, let
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(28) G(k,d2,N) ck2 IRde-22412 + 2ky'd2 - N(k2 + d112 - 1) ,

where c = b'R b and 1r R b111 -211

Differentiai,ing G with respect to k , d2 , and N , and setting the

derivatives equal to 0 yields

(29)

( 0 )

fij. 2R221.2 + 2kv - 2742 = 0 ;

g2 = 2ck + 2v' d2 - 2Nk = 0

(31) g
3

1 - k
2

- d'd
2

0
-2-

It may be safely assumed that k / 0 . Premultiplying (29) by 1,1 and

dividing by 2 yields

(32) d2 'R d + kd'v -N-2- 'd 0222 2- 2

Multiplying (30) by k and dividing by 2 yields

(33) ck2 + kv_'d2 - Nk
2

= 0 .

Adding (32) and (33) yields

(34) ck
2

+ d2 'R
22-2

d + 2kv'd
2

- (k2 + d'd
2

) 0 .

- -2-

Equations (34) and (31) imply

(35) N = ck
2
+ d2R221.2 + 2kfc12 = F(k,d ) .

Now (29) and (30) can be rewritten more conveniently as

R22
(36)

[ {1

v
N

' c k

[1

*12
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[

d

2From (31), (35), and (36), it follows that is the normalized latent

k

R22

vector corresponding to the largest latent root of
c

When the values of d
2

and k have been determined to the desired degree

of accuracy, then the solution to the original problem is

(37) d' = [di , where di = kbi

Now d , unlike b
'

has the same number of elements as b . The cosine

of the angle between b and d is simply b'Rd/[(b'Rb)(d'Rd)]z

IV. Example

The similarities matrix for this example (Table 1) contains phi-coefficients

between pairs of subjects, based on 90 binary responses. The data were obtained

in a study of reading comprehension. There were three "treatments," indicated in

the tables and figures by X , Y , and Z . One of the basic hypotheses of the

study was that subjects within a treatment group would be relatively homogeneous

in terms of their response patterns, and that the groups would be distinct. In

other words, there was an a priori three-cluster hypothesis with respect to the

subject-space.

Insert Table 1 about here

Table 2 gives the coordinates of the subjects on four contrast components,

namely the first and second Method A and the first and second Method B com-

ponents (Al, A2, Bl, and B2, respectively). In each case, the subjects have

been ordered with respect to their coordinates. Differences between suc-

cessive pairs of coordinates are given, and partitions have been made according

to the "weak criterion" suggested f.n Section II.

13
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The right-hand column of Table 2 indicates the first partition of the sub-

jects according to IICA. Note that this split is the only one which fails to

conform to the initial hypothesis. Furthermore, this misclassification by IICA

is rather "robust," persisting even when the similarities are converted from

Eli-coefficients to rank scores.

Insert Table 2 about here

The extension of A2 and B2, from a 19-subject subspace to the full 28-

subject space, is outlined in Table 3. k was found to be 0.2675 for Method A

and 0.2705 for Method B. The cosine of the angle between the first and extended

second components was found to be -.7753 for Method A and 0.7860 for Method B.

Insert Table 3 about here

Figure 1 shows a plot of the subjects in the plane determined by the first

and extended second components according to Method A. Figure 2 shows a similar

plot for the Method B components. The appropriate columns of Table 3 have been

scaled according to b'Rb or d'Rd .

Insert Figures 1 and 2 about here

Figures 3 and 4 show plots of two-dimensional orthogonal solutions obtained

by Methods A and B, respectively. The three-cluster structure is apparent.

Insert Figures 3 and 4 about here



V. Summary and Conclusions

McQuitty's (1967) technique of hierarchical cluster analysis--Iterative

Intercolumnar Correlational Analysis--has been discussed in terms of matrix

algebra and geometry. Under this interpretation, it has been shown that IICA

achieves a solution by transforming the stiffalus-vectors themselves toward a

bipolar, one-factor structure. Two alternative methods were suggested for

extracting a single bipolar factor directly from the initial similarities

matrix. Extension of linear contrasts from smaller to larger subspaces was

also discussed. The major features of the new methods were illustrated in the

analysis of some data from a reading comprehension study.
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Table Headim

Table 1. Similarities matrix. Phi-coefficients between pairs of subjects,

based on 90 binary responses. The partitioning indicates the a priori three-

cluster hypothesis. (Decimal points are suppressed.)

Table 2. Coordinates of subjects on contrast components. SubjeCts have

been ordered with respect to their coordinates, and differences between succes-

sive pairs of coordinates are given in the column to the right of the coordinates

themselves. Partitions according to the weak criterion are given. The right-hand

column gives the first partition according to IICA. (Decimal points are sup-

pressed.)

Table j. Extension of second Method A and Method B contrast components.

Blanks in columns A2 and B2 are filled by the extension 12 . Other elements in

columns A2E and B2E are equal to k times the corresponding elements of columns

A2 and B2, respectively.
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Table 1 (Continued)

.Z1 Z2 Z3 Z4 Z5 z6 Z7 z8 Z9 Z10

X1 -1 30 20 22 22 5 10 7 2 15

X2 8 17 14 11 22 -12 15 21 12 17

X3 0 12 5 2 1 -13 7 4 1 6

x4 3 19 9 13 9 -3 16 1 9 -5

x5 2 7 0 4 2 -12 9 5 2 7

x6 9 13 8 5 8 -10 9 8 -2 13

x7 -6 -3 -2 -4 -5 -20 3 -6 -5 2

X8 19 22 17 14 19 -2 22 14 19 5

x9 0 25 15 24 23 7 24 9 3 16

Y1 25 24 25 15 20 -1 18 18 30 24

Y2 7 29 23 11 19 7 5 11 19 21

Y3 -7 18 15 10 19 6 -2 -5 -1 12

Y4 -1 5 -3 -19 -20 -14 -12 -5 0 -4

Y5 20 57 48 3o 36 27 28 26 36 4o

Y6 -3 12 9 -8 -7 3 -1 -16 -7 -1

Y7 15 40 29 18 18 15 15 23 28 22

Y8 17 11 18 14 15 -9 10 19 25 18

Y9 20 33 28 18 17 8 20 15 27 21

Z1 100 38 52 49 45 19 58 71 59 40

Z2 38 100 33 29 26 25 36 36 26 29

z3 52 33 100 45 65 23 47 55 50 58

z4 49 29 45 loo 48 12 61 31 33 42

z5 45 26 65 48 100 31 41 57 58 71

z6 19 25 23 12 31 100 24 18 4 27

z7 58 36 47 61 41 24 100 55 41 48

z8 71 36 55 31 57 18 55 100 73 50

z9 59 26 50 33 58 4 41 73 100 52

zlo 4o 29 58 42 71 27 48 5o 52 100
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Table 2

Coordinates of Subjects on Contrast Components

S# Al diff 0 A2 diff 0 B1 diff S# B2 diff IICA

z1 -239 y4 -323 x5 -312 Y4 -323 z6

005 035 ow 034

z8 -234 Y3 -288 X7 -305 Y3 -289 Z2

000 013 016 014

Z9 -234 Y6 -274 X3 -288 Y6 -274 Z9

010 018 017 017

Z3 -223 Y2 -256 x6 -271 Y2 -257 z8

001 006 033 006

Z5 -222 Y8 -250 X2 -238 Y8 -251 Z10

oo8 031 041 031

Z10 -214 Y9 -219 x8 -197 Y9 -221 Z5

026 001 004 001

Z7 -188 Y1 -218 x4 -193 Y1 -220 Z3

012 027 000 027

z4 -176 Y7 -191 xi -193 Y7 -193 z7

005 126 001 125

z6 -171 Y5 -066 x9 -193 Y5 -067 z4

055 134 081 135

Z2 -116 Z2 069 Y4 -112 Z2 068 z1

010 056 062 057

Y5 -106 z6 124 Y3 -05o z6 124 Y7

047 077 048 076

Y1 -059 Z3 202 Y8 -002 Z3 200 Y5

001 011 012 011

Y9 -058 Z9 213 Y6 009 z9 211 Y9

012 003 013 003

Y7 -047 z10 215 Y2 023 Z10 214 Y1

020 002 019 003

Y2 -027 Z4 217 Y7 042 Z4 217 Y6

017 037 012 036

Y6 -010 Z5 254 Y9 054 Z5 253 Y4

009 003 002 003

Y8 -002 Z7 257 Y1 055 Z7 256 y8

048 002 047 002

Y3 046 zi 259 Y5 102 Z1 258 Y3

064 017 012 017

Y4 110 Z8 276 Z2 113 z8 275 Y2

080 o58

x9 190 z6 172 x8

000 003

xi 190 z4 175 x4

001 012

X4 191 Z7 186 X7

003 025

x8 194 Z10 212 X3

041 008

X2 235 Z5 220 x6

034 001

x6 27o Z3 221 X5

016 012

X3 286 Z9 231 X2

018 001

X7 303 Z8 232 xi

oo6 00(

x5 309 zi 238 x9

"I
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Table 3

Extension of Second Method A and Method B Contrast Components

P# Al A2 A2E B1 B2 B2E

X1 190 -302 -193 -302

X2 235 -332 -238 IMOM .332

X3 286 -349 -288 -349

x4 191 -279 -193 -279

x5 310 -365 -312 -364

x6 270 - - -- -322 -271 - - -- -322

x7 303 -329 -305 -328

x8 194 -307 -197 -306

x9 190 ---- -20 -193 ---- -298

Y1 -060 -219 -059 055 -220 -060

Y2 -027 -256 -068 023 -257 -070

Y3 046 -288 -077 -050 -289 -078

Y4 110 -323 -066 -112 -323 -087

Y5 -106 -066 -018 102 -067 -018

Y6 -010 -274 -075 009 -274 -074

Y7 -047 -191 -051 042 -193 -052

Y8 -002 -250 -067 -002 -251 -068

Y9 -058 -219 -059 054 -221 -060

Zl -239 259 069 238 258 aro

Z2 -116 069 018 113 068 018

Z3 -223 201 054 221 200 054

Z1 -176 217 058 175 217 059

Z5 -222 254 068 220 253 068

z6 -171 124 033 172 124 034

z7 -188 257 069 186 256 069

z8 -234 276 074 232 275 074

z9 -234 213 057 231 211 057

Z10 -214 215 058 212 214 057
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Figure Captions

Fig. 1. Plot of columns Al (b) and A2E (d) from Table 3. The

coordinates have been multiplied by the square root of "variance-accounted-for."

The cosine of the angle between the axes is -.76.

Fig. 2. Plot of columns.B1 (b) and B2E (d) from Table 3. The coordi-

nates have been multiplied by the square root of "variance-accounted-for." The

cosine of the angle between the axes is 0.79.

Fig. 3. Wo-dimensional orthogonal solution, Method A.

Fig. 4. Two-dimensional orthogonal solution, Method B.
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